a2 United States Patent

US010325003B2

ao) Patent No.: US 10,325,003 B2

Dighe et al. 45) Date of Patent: *Jun. 18, 2019
(54) CONFIGURATION RESOLUTION FOR USPC ottt 709/221
TRANSITIVE DEPENDENCIES See application file for complete search history.
(71) Applicant: Walmart Apollo, LL.C, Bentonville, (56) References Cited
AR (US)
U.S. PATENT DOCUMENTS
(72) Inventors: Prashant Dighe, Cupertino, CA (US); .
Bhanu Cherukumille, Fremont, CA 7,461,374 Bl 12/2008 Balint et al.
. . . 7,574,692 B2 8/2009 Herscu
(US); Niraj K. Agarwal, Dublin, CA 8.037.453 Bl 1072011 Zawadzki
(US); Brian M. Johnson, Santa Clara, 8,082,294 B2 122011 Krahulec
CA (US); Soumen Sarkar, San Jose, (Continued)
CA (US)
(73) Assignee: WALMART APOLLO, LLC, OTHER PUBLICATIONS
Bentonville, AR (US) Oracle, “The Java EE 5 Tutorial,” Jun. 2010, docs.oracle.com/
(*) Notice: Subject to any disclaimer, the term of this javaee/5/tutorial/doc/javaeetutorial S.pdf p. 39-63.
%atserét ils SZ)ESHS edo odraagjusted under 35 Primary Examiner — Hua Fan
o Y VS Assistant Fxaminer — Binod J Kunwar
Th{s patent is subject to a terminal dis- (74) Attorney, Agent, or Firm — Bryan Cave Leighton
claimer. Paisner LLP
(22) Filed: Jan. 29, 2018 A method including: receiving at a server a first request from
a first provider to retrieve a first configuration for a first
(65) Prior Publication Data lookup order; determining the first configuration for the first
lookup order using the server based at least in part on both
US 2018/0165376 Al Jun. 14, 2018 . .
e an ordering specified by the first lookup order and the first
Related U.S. Application Data ce.lll. being through the dir.ect dependency rela.ltionship;. pro-
]] o viding the first configuration to the first provider; receiving
(63) Continuation of application No. 14/530,346, filed on at the server a second request from the first provider to
Oct. 31, 2014, now Pat. No. 9,881,098. retrieve a second configuration for a second lookup order;
determining the second configuration for the second lookup
(51) Int. CI. order using the server based at least in part on both an
GO6F 16/958 (2019.01) ordering specified by the second lookup order and the
(52) US. CL second call to the first provider by the application being
CPC ... GO6F 16/986 (2019.01); GOG6F 16/958 through the transitive dependency relationship; and provid-
(2019.01) ing the second configuration to the first provider. Other
(58) Field of Classification Search embodiments are described.

CPC GOG6F 17/30896; GOGF 16/986; GOGF
16/958; HO4AL 41/0816

106

20 Claims, 7 Drawing Sheets

100

/\/

108

-
—
p— ——— 112
= gl PP
02— ':==-"§—114
4

US 10,325,003 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,255,357 B1* 8/2012 Heimbach GO6F 21/604
707/609
8,627,286 B2 1/2014 Feigen
9,268,592 B2 2/2016 Hassine et al.
9,336,021 B2 5/2016 Johnson et al.
2002/0147903 Al 10/2002 Hubert et al.
2006/0179042 Al 8/2006 Bram et al.
2006/0242183 Al™* 10/2006 Niyogiccccceeen. GOGF 9/44505
2008/0178075 Al* 7/2008 Trethaway GOGF 21/6227
715/255
2008/0235611 A1* 9/2008 Fraley GOGF 9/44505
715/772
2009/0006416 Al* 1/2009 Krahulec GOGF 17/30893
2009/0125612 Al 5/2009 Rabetge
2010/0198948 Al 8/2010 Yang
2011/0173605 Al 7/2011 Bourne
2011/0276948 Al 11/2011 Tripp
2012/0078865 Al* 3/2012 Channing GOGF 16/2438
707/703
2013/0067456 Al 3/2013 Khilnani et al.
2013/0318520 Al 11/2013 Abuelsaad et al.
2013/0325885 Al™ 12/2013 Levy .ccovvvevveennne GOGF 9/44505
707/758
2014/0019597 Al* 1/2014 Nathcccocenene HO04L 41/0843
709/220
2014/0095676 Al 4/2014 Beno et al.
2014/0196122 Al* 7/2014 Darccccoovvveenrnne. HO04L 63/08
726/4

* cited by examiner

U.S. Patent Jun. 18,2019 Sheet 1 of 7 US 10,325,003 B2

100

\
w bt

—/
—1 — 112
— Sl 116
102 ‘:m'-?\114

104\/7/ /_V_v_\\ 110

US 10,325,003 B2

Sheet 2 of 7

Jun. 18, 2019

U.S. Patent

70l
pIeoghoy
01z 901
$60IA8(Q x
A A 0]/ Jaydepy Jeydepy ndn 19}j013U09
Y0 asnop pIeog/oy oepiA | <¢0C
90¢ 9¢ce
sng wajsAg
1474
Jsydepy 19j|0Ju0) WYH/WOH Jedepy
Yo~ soydern ysig | —V0C Aiowapy HIOMION
OAL(] 802
WoH-9 0cc
sng [euss aAlU(Q .
an [esionun DIEH L ¢ DIA
9Ll

U.S. Patent Jun. 18,2019 Sheet 3 of 7 US 10,325,003 B2

300 — Web Server
310 — Application E 351 — Input Module
320 — First Provider E 352 — Predefined Configuration Module
330 — Second Provider E 353 — Configuration Determination Module
340 — Configuration Data 354 — Output Module

FIG. 3

US 10,325,003 B2

Sheet 4 of 7

Jun. 18, 2019

U.S. Patent

(1VHS = obje)

Ajnoas

v DId

Japinoid
ayoed

(oL=m %

0Ty

Japiaoud

souv)sistad
(06 =)

1554

(

oty
(444

€1°2L11°01 = disjsoy)

19%
Jownsuoo

0Ty

U.S. Patent Jun. 18, 2019 Sheet 5 of 7 US 10,325,003 B2

510 500

\ —-consumerA/"511

cache-provider 4 512
L env 513
@ - 514

persistence-provider ¢—— 515

env &4 516

(e

cache-provider 4~ >18
l—. env «—— 519

530

L persistence-provider 4— 531
env «— 332

(e

cache-provider 4~ >34

I env «— 535

540

\ | cache-provider «— 4!
env «— 542

@ « 3

consumer <«—— 544
cache-provider 4 345

L-— env 4 546

persistence-provider €— 548
L cache-provider 4~ 549

persistence-,orovider4”’552
I cache-provider 4— 553

FIG. 5

U.S. Patent

6

Jun. 18, 2019

430

N

Sheet 6 of 7

o
(=
o

persistence-provider

US 10,325,003 B2

420

N

cache-provider

632

SCM.getConfiguration(
“cache”, lookupOrder);

6

3

410
\
consumer
30
\
B
640
\

-

641

SCM.getConfiguration{
“cache”, lookupOrder);

645

FIG. 6

644

U.S. Patent

701 -

702 -

703 -

704 -

705 -

706 -

801 -

802 -

803 -

Jun. 18, 2019 Sheet 7 of 7 US 10,325,003 B2
700
Optional other steps
v

Receiving a request from a first provider to retrieve a first

configuration for a lookup order

A

y

Determining the configuration for

the lookup order

A

y

Providing the configuration for the lookup order to the first provider

A

y

Receiving first information at the application

A

y

Providing second information for

at least a portion of a web page

FIG. 7

01

Storing a first set of predefined configurations defined by the

application

Storing a second set of predefined configurations defined by the

first provider

Storing a third set of predefined configurations defined by the

second provider

FIG. 8

US 10,325,003 B2

1
CONFIGURATION RESOLUTION FOR
TRANSITIVE DEPENDENCIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/530,346, filed Oct. 31, 2014. U.S. patent
application Ser. No. 14/530,346 is incorporated herein by
reference in its entirety.

TECHNICAL FIELD

This disclosure relates generally to software development
and deployment, and relates more particularly to configu-
ration resolution for transitive dependencies.

BACKGROUND

In various web applications, application dependencies,
including transitive dependencies, are generally packaged
along with their respective configurations at the time of
deployment. Yet it is often difficult to know the appropriate
configuration settings, particularly for transitive dependen-
cies, at the time of deployment. As a result, applications
often result in having fairly static configurations with vari-
ous possible errors in configuration settings.

BRIEF DESCRIPTION OF THE DRAWINGS

To facilitate further description of the embodiments, the
following drawings are provided in which:

FIG. 1 illustrates a front elevational view of a computer
system that is suitable for implementing various embodi-
ments of the systems disclosed in FIG. 3;

FIG. 2 illustrates a representative block diagram of an
example of the elements included in the circuit boards inside
a chassis of the computer system of FIG. 1;

FIG. 3 illustrates a block diagram of a web server, which
can be employed for configuration resolution, according to
an embodiment;

FIG. 4 illustrates a block diagram of an exemplary depen-
dency graph, according to an embodiment;

FIG. 5 illustrates a tree view of configurations stored in a
hierarchical manner, according to the embodiment of FIG. 4;

FIG. 6 illustrates a sequence diagram for calls by the
cache provider of FIG. 4 to obtain the configuration for the
cache setting;

FIG. 7 illustrates a flow chart for a method of configu-
ration resolution, according to another embodiment; and

FIG. 8 illustrates a flow chart for a method of optional
other steps, according to the embodiment of FIG. 7.

For simplicity and clarity of illustration, the drawing
figures illustrate the general manner of construction, and
descriptions and details of well-known features and tech-
niques may be omitted to avoid unnecessarily obscuring the
present disclosure. Additionally, elements in the drawing
figures are not necessarily drawn to scale. For example, the
dimensions of some of the elements in the figures may be
exaggerated relative to other elements to help improve
understanding of embodiments of the present disclosure.
The same reference numerals in different figures denote the
same elements.

The terms “first,” “second,” “third,” “fourth,” and the like
in the description and in the claims, if any, are used for
distinguishing between similar elements and not necessarily
for describing a particular sequential or chronological order.

10

15

20

25

30

35

40

45

50

55

60

65

2

It is to be understood that the terms so used are interchange-
able under appropriate circumstances such that the embodi-
ments described herein are, for example, capable of opera-
tion in sequences other than those illustrated or otherwise
described herein. Furthermore, the terms “include,” and
“have,” and any variations thereof, are intended to cover a
non-exclusive inclusion, such that a process, method, sys-
tem, article, device, or apparatus that comprises a list of
elements is not necessarily limited to those elements, but
may include other elements not expressly listed or inherent
to such process, method, system, article, device, or appara-
tus.

The terms “left,” “right,” “front,” “back,” “top,” “bot-
tom,” “over,” “under,” and the like in the description and in
the claims, if any, are used for descriptive purposes and not
necessarily for describing permanent relative positions. It is
to be understood that the terms so used are interchangeable
under appropriate circumstances such that the embodiments
of the apparatus, methods, and/or articles of manufacture
described herein are, for example, capable of operation in
other orientations than those illustrated or otherwise
described herein.

The terms “couple,” “coupled,” “couples,” “coupling,”
and the like should be broadly understood and refer to
connecting two or more elements mechanically and/or oth-
erwise. Two or more electrical elements may be electrically
coupled together, but not be mechanically or otherwise
coupled together. Coupling may be for any length of time,
e.g., permanent or semi-permanent or only for an instant.
“Electrical coupling” and the like should be broadly under-
stood and include electrical coupling of all types. The
absence of the word “removably,” “removable,” and the like
near the word “coupled,” and the like does not mean that the
coupling, etc. in question is or is not removable.

As defined herein, two or more eclements are “integral” if
they are comprised of the same piece of material. As defined
herein, two or more elements are “non-integral” if each is
comprised of a different piece of material.

As defined herein, “approximately” can, in some embodi-
ments, mean within plus or minus ten percent of the stated
value. In other embodiments, “approximately” can mean
within plus or minus five percent of the stated value. In
further embodiments, “approximately” can mean within plus
or minus three percent of the stated value. In yet other
embodiments, “approximately” can mean within plus or
minus one percent of the stated value.

2 2 <

DESCRIPTION OF EXAMPLES OF
EMBODIMENTS

Various embodiments include a method. The method can
include receiving on a server a request from a first provider
to retrieve a configuration for a lookup order. The first
provider can be configured to be called directly by an
application such that the application has a direct dependency
relationship with the first provider. The first provider can be
configured to be called by the application through a second
provider such that the application has a transitive depen-
dency relationship with the first provider through the second
provider. The request from the first provider can be received
when the first provider is called by the application through
one of the direct dependency relationship or the transitive
dependency relationship. The method also can include deter-
mining the configuration for the lookup order using the
server based at least in part on whether the call to the first
provider by the application is through the direct dependency
relationship or through the transitive dependency relation-

US 10,325,003 B2

3

ship. The method further can include providing the configu-
ration for the lookup order to the first provider. The method
additionally can include receiving first information at the
application that is based at least in part on the configuration
for the lookup order. The method further can include pro-
viding second information for at least a portion of a web
page that is based at least in part on the first information.

A number of embodiments include a system. The system
can include one or more processing modules and one or
more non-transitory memory storage modules storing com-
puting instructions configured to run on the one or more
processing modules and perform certain acts. The acts can
include receiving on a server a request from a first provider
to retrieve a configuration for a lookup order. The first
provider can be configured to be called directly by an
application such that the application has a direct dependency
relationship with the first provider. The first provider can be
configured to be called by the application through a second
provider such that the application has a transitive depen-
dency relationship with the first provider through the second
provider. The request from the first provider can be received
when the first provider is called by the application through
one of the direct dependency relationship or the transitive
dependency relationship. The acts also can include deter-
mining the configuration for the lookup order based at least
in part on whether the call to the first provider by the
application is through the direct dependency relationship or
through the transitive dependency relationship. The acts
further can include providing the configuration for the
lookup order to the first provider. The acts additionally can
include receiving first information at the application that is
based at least in part on the configuration for the lookup
order. The acts further can include providing second infor-
mation for at least a portion of a web page that is based at
least in part on the first information.

Several embodiments include a method. The method can
include receiving on a server a request from a first provider
to retrieve a configuration for a lookup order. The first
provider can be configured to be called directly by an
application such that the application has a direct dependency
relationship with the first provider. The first provider can be
configured to be called by the application through a second
provider such that the application has a transitive depen-
dency relationship with the first provider through the second
provider. The request from the first provider can be received
when the first provider is called by the application through
one of the direct dependency relationship or the transitive
dependency relationship. The request can include the lookup
order. The lookup order can specify an ordering of one or
more predefined configurations from which to determine
configuration settings to be used based on the ordering. The
method also can include determining the configuration for
the lookup order using the server based at least in part on
both: (a) the ordering specified by the lookup order, and (b)
whether the call to the first provider by the application is
through the direct dependency relationship or through the
transitive dependency relationship, such that the configura-
tion determined for the lookup order can be different when
the lookup order and the ordering specified by the lookup
order are different, and such that the configuration deter-
mined for the lookup order is different when the call to the
first provider by the application is through the direct depen-
dency relationship versus when the call to the first provider
by the application is through the transitive dependency
relationship. The method additionally can include providing
the configuration for the lookup order to the first provider.

5

10

15

20

25

30

35

40

45

55

60

65

4

Some embodiments include a system. The system can
include one or more processors and one or more non-
transitory computer-readable media storing computing
instructions configured to run on the one or more processors
and perform certain acts. The acts can include receiving on
a server a request from a first provider to retrieve a con-
figuration for a lookup order. The first provider can be
configured to be called directly by an application such that
the application has a direct dependency relationship with the
first provider. The first provider can be configured to be
called by the application through a second provider such that
the application has a transitive dependency relationship with
the first provider through the second provider. The request
from the first provider can be received when the first
provider is called by the application through one of the direct
dependency relationship or the transitive dependency rela-
tionship. The request can include the lookup order. The
lookup order can specify an ordering of one or more
predefined configurations from which to determine configu-
ration settings to be used based on the ordering. The acts also
can include determining the configuration for the lookup
order using the server based at least in part on both: (a) the
ordering specified by the lookup order, and (b) whether the
call to the first provider by the application is through the
direct dependency relationship or through the transitive
dependency relationship, such that the configuration deter-
mined for the lookup order can be different when the lookup
order and the ordering specified by the lookup order are
different, and such that the configuration determined for the
lookup order is different when the call to the first provider
by the application is through the direct dependency relation-
ship versus when the call to the first provider by the
application is through the transitive dependency relation-
ship. The acts additionally can include providing the con-
figuration for the lookup order to the first provider.

Turning to the drawings, FIG. 1 illustrates an exemplary
embodiment of a computer system 100, all of which or a
portion of which can be suitable for implementing the
techniques described herein. As an example, a different or
separate one of a chassis 102 (and its internal components)
can be suitable for implementing the techniques described
herein. Furthermore, one or more elements of computer
system 100 (e.g., a refreshing monitor 106, a keyboard 104,
and/or a mouse 110, etc.) can also be appropriate for
implementing the techniques described herein. Computer
system 100 comprises chassis 102 containing one or more
circuit boards (not shown), a Universal Serial Bus (USB)
port 112, a Compact Disc Read-Only Memory (CD-ROM)
and/or Digital Video Disc (DVD) drive 116, and a hard drive
114. A representative block diagram of the elements
included on the circuit boards inside chassis 102 is shown in
FIG. 2. A central processing unit (CPU) 210 in FIG. 2 is
coupled to a system bus 214 in FIG. 2. In various embodi-
ments, the architecture of CPU 210 can be compliant with
any of a variety of commercially distributed architecture
families.

Continuing with FIG. 2, system bus 214 also is coupled to
a memory storage unit 208, where memory storage unit 208
comprises both read only memory (ROM) and random
access memory (RAM). Non-volatile portions of memory
storage unit 208 or the ROM can be encoded with a boot
code sequence suitable for restoring computer system 100
(FIG. 1) to a functional state after a system reset. In addition,
memory storage unit 208 can comprise microcode such as a
Basic Input-Output System (BIOS). In some examples, the
one or more memory storage units of the various embodi-
ments disclosed herein can comprise memory storage unit

US 10,325,003 B2

5

208, a USB-equipped electronic device, such as, an external
memory storage unit (not shown) coupled to universal serial
bus (USB) port 112 (FIGS. 1-2), hard drive 114 (FIGS. 1-2),
and/or CD-ROM or DVD drive 116 (FIGS. 1-2). In the same
or different examples, the one or more memory storage units
of the various embodiments disclosed herein can comprise
an operating system, which can be a software program that
manages the hardware and software resources of a computer
and/or a computer network. The operating system can per-
form basic tasks such as, for example, controlling and
allocating memory, prioritizing the processing of instruc-
tions, controlling input and output devices, facilitating net-
working, and managing files. Some examples of common
operating systems can comprise Microsoft® Windows®
operating system (OS), Mac® OS, UNIX® OS, and Linux®
OS.

As used herein, “processor” and/or “processing module”
means any type of computational circuit, such as but not
limited to a microprocessor, a microcontroller, a controller,
a complex instruction set computing (CISC) microproces-
sor, a reduced instruction set computing (RISC) micropro-
cessor, a very long instruction word (VLIW) microproces-
sor, a graphics processor, a digital signal processor, or any
other type of processor or processing circuit capable of
performing the desired functions. In some examples, the one
or more processors of the various embodiments disclosed
herein can comprise CPU 210.

In the depicted embodiment of FIG. 2, various I/O devices
such as a disk controller 204, a graphics adapter 224, a video
controller 202, a keyboard adapter 226, a mouse adapter
206, a network adapter 220, and other I/O devices 222 can
be coupled to system bus 214. Keyboard adapter 226 and
mouse adapter 206 are coupled to keyboard 104 (FIGS. 1-2)
and mouse 110 (FIGS. 1-2), respectively, of computer sys-
tem 100 (FIG. 1). While graphics adapter 224 and video
controller 202 are indicated as distinct units in FIG. 2, video
controller 202 can be integrated into graphics adapter 224,
or vice versa in other embodiments. Video controller 202 is
suitable for refreshing monitor 106 (FIGS. 1-2) to display
images on a screen 108 (FIG. 1) of computer system 100
(FIG. 1). Disk controller 204 can control hard drive 114
(FIGS. 1-2), USB port 112 (FIGS. 1-2), and CD-ROM drive
116 (FIGS. 1-2). In other embodiments, distinct units can be
used to control each of these devices separately.

In some embodiments, network adapter 220 can comprise
and/or be implemented as a WNIC (wireless network inter-
face controller) card (not shown) plugged or coupled to an
expansion port (not shown) in computer system 100 (FIG.
1). In other embodiments, the WNIC card can be a wireless
network card built into computer system 100 (FIG. 1). A
wireless network adapter can be built into computer system
100 by having wireless communication capabilities inte-
grated into the motherboard chipset (not shown), or imple-
mented via one or more dedicated wireless communication
chips (not shown), connected through a PCI (peripheral
component interconnector) or a PCI express bus of computer
system 100 (FIG. 1) or USB port 112 (FIG. 1). In other
embodiments, network adapter 220 can comprise and/or be
implemented as a wired network interface controller card
(not shown).

Although many other components of computer system
100 (FIG. 1) are not shown, such components and their
interconnection are well known to those of ordinary skill in
the art. Accordingly, further details concerning the construc-
tion and composition of computer system 100 and the circuit
boards inside chassis 102 (FIG. 1) are not discussed herein.

10

15

20

25

30

35

40

45

50

55

60

65

6

When computer system 100 in FIG. 1 is running, program
instructions stored on a USB-equipped electronic device
connected to USB port 112, on a CD-ROM or DVD in
CD-ROM and/or DVD drive 116, on hard drive 114, or in
memory storage unit 208 (FIG. 2) are executed by CPU 210
(FIG. 2). A portion of the program instructions, stored on
these devices, can be suitable for carrying out at least part of
the techniques described herein.

Although computer system 100 is illustrated as a desktop
computer in FIG. 1, there can be examples where computer
system 100 may take a different form factor while still
having functional elements similar to those described for
computer system 100. In some embodiments, computer
system 100 may comprise a single computer, a single server,
or a cluster or collection of computers or servers, or a cloud
of computers or servers. Typically, a cluster or collection of
servers can be used when the demand on computer system
100 exceeds the reasonable capability of a single server or
computer. In certain embodiments, computer system 100
may comprise a portable computer, such as a laptop com-
puter. In certain other embodiments, computer system 100
may comprise a mobile device, such as a smartphone. In
certain additional embodiments, computer system 100 may
comprise an embedded system.

Turning ahead in the drawings, FI1G. 3 illustrates a block
diagram of a web server 300, which can be employed for
configuration resolution, according to an embodiment. Web
server 300 is merely exemplary, and embodiments of the
web server and elements thereof are not limited to the
embodiments presented herein. The web server and ele-
ments thereof can be employed in many different embodi-
ments or examples not specifically depicted or described
herein. In some embodiments, certain elements or modules
of web server 300 can perform various procedures, pro-
cesses, and/or activities. In other embodiments, the proce-
dures, processes, and/or activities can be performed by other
suitable elements or modules of web server 300.

In many embodiments, web server 300 can be a computer
system, such as computer system 100 (FIG. 1), as described
above, and can each be a single computer, a single server, or
a cluster or collection of computers or servers, or a cloud of
computers or servers. In a number of embodiments, web
server 300 can include an application 310, a first provider
320, a second provider 330, and/or configuration data 340.
In many embodiments, application 310 can be dependent
upon first provider 320 and/or second provider 330. For
example, first provider 320 and/or second provider 330 can
be services, libraries, and/or other dependencies included in
application 310, which can provide a service to application
310. In many embodiments, application 310 can be depen-
dent upon additional and/or other providers, which can be
similar to first provider 320 and/or second provider 330. In
some embodiments, configuration data 340 can store con-
figuration data for application 310, first provider 320, and/or
second provider 330.

In various embodiments, web server 300 can include one
or more modules, such as modules 351-354, which are
described below in further detail. In many embodiments,
web server 300 can interface with users through display
windows, which can be displayed on a screen, such as screen
108 (FIG. 1). In some embodiments, the display windows
can be any form of display suitable for interfacing with the
users. In many embodiments, the display windows can be
presented in the form of a graphical user interface that
allows the users to interact with application 310. In some
embodiments, the display windows can be provided through
a web based service in the form of one or more web pages

US 10,325,003 B2

7

that the users can interact with to perform the same or other
functions. In a number of embodiments, the display win-
dows can be provided through a stand-alone software appli-
cation, and can display graphical output associated with the
software application.

Turning ahead in the drawings, FIG. 4 illustrates a block
diagram of an exemplary dependency graph 400, according
to an embodiment. Dependency graph 400 is merely exem-
plary and embodiments of the dependency graph are not
limited to the embodiments presented herein. The depen-
dency graph can be employed in many different embodi-
ments or examples not specifically depicted or described
herein. Dependency graph 400 can depict an application,
such as a web application, dependencies for the application
and/or configurations for the application. For example, in a
Java or Java Enterprise Edition (Java EE) web application,
application dependencies and their transitive dependencies
can be packaged along with their respective configurations
as an enterprise application archive file (EAR file) or a web
application archive file (WAR file). The packaging can be
done by an Application Deployer and Administrator, who
can be denoted as simply the administrator. Generally, the
administrator can configure the web application for the
operational environment by modifying a deployment
descriptor of the web application. The deployment descrip-
tor can be a configuration file, which can specify configu-
ration settings for the web application when it is deployed on
to one or more servers, such as web server 300 (FIG. 3).

Dependency graph 400 in FIG. 4 can depict an exemplary
WAR file, such as consumer.war. For example, dependency
graph 400 can include an application, such as consumer 410;
a first provider 420, such as cache provider 420; and a
second provider, such as persistence provider 430. Con-
sumer 410 can be similar or identical to application 310
(FIG. 3); cache provider 420 can be similar or identical to
first provider 320 (FIG. 3); and/or persistence provider 430
can be similar or identical to second provider 330 (FIG. 3).
Consumer 410 can be an application, which can be depen-
dent on and/or consume various resources, such as cache
provider 420 and persistence provider 430. In a number of
embodiments, cache provider 420 and/or persistence pro-
vider 430 can be libraries and/or other dependencies. In
general terms, consumer 410 can be said to be a consumer,
as it uses services provided by one or more providers. Cache
provider 420 and persistence provider 430 can be said to be
providers, as they can be libraries or dependencies that
provide various services to consumer 410.

In a number of embodiments, consumer 410 can make one
or more procedure calls to cache provider 420, and thus can
be said to be directly dependent on cache provider 420. In
other words, consumer 410 and cache provider 420 can be
said to have a direct dependency relationship. In a number
of embodiments, consumer 410 can make one or more
procedure calls to persistence provider 430, and thus can be
said to be directly dependent on persistence provider 430. In
many embodiments, persistence provider 430 can in turn be
dependent on cache provider 420. Consumer 410 can thus be
transitively dependent on cache provider 420 through per-
sistence provider 430. In other words, consumer 410 and
cache provider 420 can be said to have a transitive depen-
dency relationship. When cache provider 420 is called
directly by consumer 410, consumer 410 can be said to be
the client of cache provider 420, as consumer 410 is the
immediate caller of cache provider 420. When cache pro-
vider 420 is called by persistence provider 430, persistence

10

15

20

25

30

35

40

45

50

55

60

65

8

provider 430 can be said to be the client of cache provider
420, as persistence provider 430 is the immediate caller of
cache provider 420.

The various components of a web application, such as
consumer 410, cache provider 420, and persistence provider
430, can provide and/or require various different configu-
ration settings. For example, cache provider 420 can use a
cache setting 441, which can be a time to live (ttl) setting of
10. In many embodiments, cache setting 441 can be a default
setting for cache provider 420, and the cache setting can be
modified, such as by consumer 410 and/or persistence
provider 430. For example, when persistence provider 430
uses cache provider 420, it can be advantageous for the
cache setting to be set to a different cache setting, such as
cache setting 443. Cache setting 443 can have a ttl setting of
200. In some embodiments, cache setting 443 can be the
optimal cache setting when persistence provider 430 calls
cache provider 420. As another example, when consumer
410 uses cache provider 420, it can be advantageous for the
cache setting to be set to a different cache setting, such as
cache setting 442. Cache setting 442 can have a ttl setting of
50. In some embodiments, cache setting 442 can be the
optimal cache setting when consumer 410 calls cache pro-
vider 420. In a number of embodiments, the optimal settings
for a configuration setting can conflict across the different
dependencies, such as, for example, cache setting 442 con-
flicting with cache setting 443.

As a further example, persistence provider 430 can use a
security setting 451, which can be an encryption algorithm
(algo) setting of SHA1 (Secure Hash Algorithm-1). In some
embodiments, it can be advantageous for security setting
451 to be provided by persistence provider 430 in such a
way that it cannot be overridden.

In a still further example, persistence provider 430 can use
a hosts setting 461. In many embodiments, hosts setting 461
can be a host internet protocol (IP) address of a database,
which can be unknown by persistence provider 430 until it
is provided by consumer 410 and/or those deploying con-
sumer 410 as a web application. For example, hosts setting
461 can be a hosts internet protocol (IP) address of
10.11.12.13. In many embodiments, hosts setting 461 can
have no default setting.

Under conventional procedures for packaging and
deploying web applications, the components of the web
application, such as consumer 410, cache provider 420,
and/or persistence provider 430 can provide default settings
for configuration settings and/or leave various configuration
settings undefined. The administrator then defines the unde-
fined settings at the time of deployment. The administrator
also can change the default configuration settings at the time
of'deployment. Under this conventional approach, the result-
ing web application can have a kind of static configuration.
This conventional approach can have several drawbacks.
For example, because the configuration settings generally
need to be defined at the time of deployment, changes at
runtime are generally not possible without a re-build and
re-deploy, or at least a re-deploy.

Another drawback of the conventional approach can be
that an application that has already been assembled can
require tweaking in order to inject configuration settings,
which can be cumbersome and/or require additional tools.
Additionally, there can be no easy way to define multiple
different configurations when a dependency is being used by
the consumer and a provider, or by multiple providers.

As yet another example of a drawback of the convention
approach, provider libraries that are packaged with the
application can need to be configured by the administrator,

US 10,325,003 B2

9

regardless of whether the administrator is trained or other-
wise has expertise for such provider configurations. Because
an administrator can be required to provide configuration
settings despite the lack of expertise, the convention
approach can lead to various configuration errors or subop-
timal configuration settings. Furthermore, transitive depen-
dencies, which are dependencies introduced by the provid-
ers, can also need to be configured by the administrator. Yet
the administrator often does not know what settings are
appropriate or optimal for the providers that are called
through transitive dependencies. For example, the adminis-
trator who packages consumer 410 may know how to
configure the cache settings for the use of cache provider
420 by consumer 410, but may not how the cache settings
should be configured for the use of cache provider 420 by
persistence provider 430. This problem can be particularly
acute for the providers that are called only through transitive
dependencies, as the administrator may not know anything
about such providers.

Still further, providers can be unable to restrict consumers
and/or administrators from overriding configuration settings
under the conventional approach. Moreover, it can be dif-
ficult or even impossible under the convention approach for
providers to force the consumer and/or administrator to
provide configuration settings when the defaults do not
make practical sense. Furthermore, the conventional
approach can make it difficult or impossible for a provider
at runtime to take control of a configuration that has been
overridden by a consumer.

In many embodiments, the systems and methods for
configuration resolution described herein can advanta-
geously eliminate the need for performing the lifecycle steps
of edit, re-build, and re-deploy when changing the configu-
ration under the conventional approach. In several embodi-
ments, the systems and methods described herein can ben-
eficially remove the static binding of dependencies and their
configurations. In a number of embodiments, the system and
methods described herein can provide application program-
ming interfaces (APIs) for providers to take full control of
their configuration resolution process.

Turning ahead in the drawings, FIG. 5 illustrates a tree
view of configurations 500 stored in a hierarchical manner,
according to the embodiment of FIG. 4. Configurations 500
are merely exemplary, and embodiments of configuration
resolution can be employed in many different embodiments
or examples not specifically depicted or described herein. In
a number of embodiments, configurations 500 can be stored
in configuration data 340 (FIG. 3). In several embodiments,
configuration 500 can be stored on a server, such as web
server 300 (FIG. 3). In many embodiments, configurations
500 can be stored on the server in a hierarchical manner, as
shown in FIG. 5. For example, configurations can be stored
as an XML document, or in another suitable hierarchical tree
format.

In some embodiments, configurations 500 can include
sets of configurations that are defined by each of the com-
ponents of the web application. For example, configurations
500 can correspond to dependency graph 400 in FIG. 4, and
can include a set of configurations defined by consumer 410
(FIG. 4), such as consumer configurations 510; a set of
configurations defined by persistence provider 430 (FIG. 4),
such as persistence-provider configurations 530; and/or a set
of configurations defined by the cache provider 420 (FIG. 4),
such as cache-provider configurations 540. In other embodi-
ments, configurations 500 can include other configurations
for other dependencies.

20

30

40

45

50

55

10

In many embodiments, each of the set of configurations
(e.g., 510, 530, 540) can be rooted at a root level node that
matches the component that defined the values in the node.
For example, in consumer configurations 510, a consumer
node 511 can be the root level node, and all the configura-
tions in consumer configurations 510 can be set by consumer
410 (FIG. 4). Throughout this disclosure, when a configu-
ration is said to be set by a component, it is to be understood
that the configuration can be set by the component, the
developers of the component, and/or an administrator for the
component.

In several embodiments, the set of configurations (e.g.,
510, 530, and/or 540) can include an environment with
configuration settings and/or subtrees having an environ-
ment with configuration settings. For example, consumer
configurations 510 can include a cache-provider node 512,
which can root a subtree that includes configuration settings
for when consumer 410 (FIG. 4) is using cache-provider 420
(FIG. 2). The subtree can include an environment node 513,
under which there can be one or more configurations, such
as configuration 514. In many embodiments, configuration
514 can be similar to cache setting 442 (FIG. 4), and can be
the cache setting specified by consumer 410 (FIG. 4) when
consumer 410 (FIG. 4) is using cache provider 420 (FIG. 4).
Under the configuration resolution approach described
herein, the cache setting used by cache provider 420 (FIG.
4) can be different based on various factors, such as which
component defined the cache setting, which component or
components are calling cache provider 420 (FIG. 4),
whether the call is through a direct or transitive dependency
relationship, and/or the lookup order defined by cache
provider 420 (FIG. 4). As such, there are multiple cache
settings in configurations 500, and configuration 514 is thus
denoted as cache (1).

In many embodiments, consumer configurations 510 can
include a persistence-provider node 515, which can root a
subtree that includes configuration settings for when con-
sumer 410 (FIG. 4) is using persistence provider 430 (FIG.
4). The subtree can include an environment node 516, under
which there can be one or more configurations, such as
configuration 517. In a number of embodiments, configu-
ration 517 can be similar to hosts setting 461 (FIG. 4). In
some embodiments, consumer configurations 510 can
include a cache-provider node 518 under persistence-pro-
vider node 515. Cache-provider node 518 can root a subtree
that includes configuration settings for when consumer 410
(FIG. 4) is using persistence provider 430 (FIG. 4), which is
in turn using cache provider 420 (FIG. 4). In a number of
embodiments, the subtree can include an environment node
519, under which there can be one or more configurations,
such as configuration 520. In several embodiments, configu-
ration 520 can be similar to cache setting 443 (FIG. 4), and
can be the cache setting specified by consumer 410 (FIG. 4)
when consumer 410 (FIG. 4) is using persistence provider
430 (FIG. 4), which is using cache provider 420 (FIG. 4).
Configuration 520 can be denoted as cache (2).

In a number of embodiments, persistence-provider con-
figurations 530 can include a persistence-provider node 531,
which can be the root level node of persistence-provider
configurations 530. In several embodiments, persistence-
provider configurations 530 can include an environment
node 532, under which there can be one or more configu-
rations, such as configuration 533. In many embodiments,
configuration 533 can be similar to security setting 451
(FIG. 4), and can be the security setting specified by
persistence provider 430 (FIG. 4). In many embodiments,
persistence-provider configurations 530 can include a cache-

US 10,325,003 B2

11

provider node 534. Cache-provider node 534 can root a
subtree that includes configuration settings for when persis-
tence provider 430 (FIG. 4) is using cache provider 420
(FIG. 4). In a number of embodiments, the subtree can
include an environment node 535, under which there can be
one or more configurations, such as configuration 536. In
several embodiments, configuration 536 can be similar to
cache setting 443 (FIG. 4), and can be the cache setting
specified by persistence provider 430 (FIG. 4) when persis-
tence provider 430 (FIG. 4) is using cache provider 420
(FIG. 4). Configuration 536 can be denoted as cache (3).

In a number of embodiments, cache-provider configura-
tions 540 can include a cache-provider node 541, which can
be the root level node of cache-provider configurations 540.
In several embodiments, cache-provider configurations 540
can include an environment node 542, under which there can
be one or more configurations, such as configuration 543. In
many embodiments, configuration 543 can be similar to
cache setting 441 (FIG. 4), and can be the cache setting
specified by cache provider 420 (FIG. 4). Configuration 543
can be denoted as cache (4).

In many embodiments, cache-provider configurations 540
can include subtrees that include configurations for the
different manners in which cache-provider 420 (FIG. 4) can
be used. In several embodiments, cache-provider configu-
rations 540 can include a consumer node 544, which can
root a subtree that includes configuration settings specified
by cache provider 420 (FIG. 4) for when consumer 410
(FIG. 4) is using cache provider 420 (FIG. 4). For example,
cache-provider 540 can include a cache-provider node 545
under consumer node 544, which can root a subtree that
includes configuration settings for when consumer 410
(FIG. 4) is directly using cache-provider 420 (FIG. 2). The
subtree can include an environment node 546, under which
there can be one or more configurations, such as configu-
ration 547. In many embodiments, configuration 547 can be
similar to cache setting 442 (FIG. 4), and can be the cache
setting specified by cache provider 420 (FIG. 4) when
consumer 410 (FIG. 4) is using cache provider 420 (FIG. 4).
Configuration 547 can be denoted as cache (5).

In many embodiments, cache-provider configurations 540
can include a persistence-provider node 548 under consumer
node 544, under which there can be a cache-provider node
549, which can root a subtree that includes configuration
settings specified by cache provider 420 (FIG. 4) for when
consumer 410 (FIG. 4) is using persistence provider 430
(FIG. 4), which is in turn using cache provider 420 (FIG. 4).
In a number of embodiments, the subtree can include an
environment node 550, under which there can be one or
more configurations, such as configuration 551. In several
embodiments, configuration 551 can be similar to cache
setting 443 (FIG. 4), and can be the cache setting specified
by cache provider 420 (FIG. 4) when consumer 410 (FIG. 4)
is using persistence provider 430 (FIG. 4), which is using
cache provider 420 (FIG. 4). Configuration 551 can be
denoted as cache (6).

In a number of embodiments, cache-provider configura-
tions 540 can include a persistence-provider node 552 under
cache-provider node 541, under which there can be a cache-
provider node 553, which can root a subtree that includes
configuration settings specified by cache provider 420 (FIG.
4) for when persistence provider 430 (FIG. 4) is using cache
provider 420 (FIG. 4). In several embodiments, the subtree
can include an environment node 554, under which there can
be one or more configurations, such as configuration 555. In
several embodiments, configuration 555 can be similar to
cache setting 443 (FIG. 4), and can be the cache setting

10

15

20

25

30

35

40

45

50

55

60

65

12
specified by cache provider 420 (FIG. 4) when persistence
provider 430 (FIG. 4) is using cache provider 420 (FIG. 4).
Configuration 555 can be denoted as cache (7).

As shown in FIG. 5, configurations 500 can include
multiple configurations for a single configuration setting
type, such as the cache setting, with each configuration
corresponding a different manner of usage, such as whether
the call to cache provider 420 (FIG. 4) is through a direct or
transitive dependency relationship, based on which compo-
nent defines the cache setting, and based on which compo-
nent or components are calling cache provider 420 (FIG. 4).
The multiple different configurations can beneficially allow
different configuration settings to be used in different situ-
ations. In many embodiments, the configuration resolution
systems and methods described herein can use configura-
tions 500 to determine the configuration settings. For
example, in some embodiments, predefined configuration
module 352 (FIG. 3) can store the configurations in con-
figurations 500. It should be appreciated that configurations
500 is merely exemplary, and the tree structure can be
modified commensurate to modifications in dependency
graph 400 (FIG. 4).

In many embodiments, configuration determination mod-
ule 353 (FIG. 3) can determine which configuration and/or
configurations from among configurations 500 should be
used. In many embodiments, input module 351 (FIG. 3)
and/or output module 354 (FIG. 3) can provide one or more
APIs to allow one or more components of the web applica-
tion to access the configuration settings. In many embodi-
ments, the APIs can allow the component to specify a
configuration name and lookup order. The configuration
name can be used to specify which configuration setting is
being accessed. For example, the configuration name of
“cache” can be used to specify the cache settings, such as
configurations 514, 520, 536, 543, 547, 551, and 555. In
many embodiments, the lookup order can be used to specify
which configuration setting should be used, and/or which
order of configuration settings should be used.

Table 1 shows an exemplary API for accessing configu-
ration settings in accordance with the present disclosure. For
example, a SCM (Service Configuration Management) class
can include a routine named getConfiguation, which can
take the configuration name (configName) and the lookup
order (lookupOrder) as inputs, and can return a configura-
tion. In a number of embodiments, the possible lookup
orders can be enumerated, such as shown in Table 1. In many
embodiments, the lookup orders can include default, client,
final, provider, consumer, provider-consumer, and/or con-
sumer-provider lookup orders, as described below in further
detail. For example, a provider, such as cache provider 420
(FIG. 4) can use the cache setting, and can call SCM.get-
Configuration(cache, lookupOrder) to determine the cache
setting for a particular lookup order defined by cache
provider 420 (FIG. 4).

TABLE 1

public class SCM {
public Configuration getConfiguration(String configName,
LookupOrder lookupOrder);

public enum LookupOrder {
DEFAULT,
CLIENT,
FINAL,
PROVIDER,
CONSUMER,

US 10,325,003 B2

13
TABLE 1-continued

PROVIDER__CONSUMER,
CONSUMER__PROVIDER

In many embodiments, the default lookup order can be the
default selection when no other lookup order is specified. In
a number of embodiments, the default lookup order can be
similar or identical to the convention approach used for
configurations in web applications. In many embodiments,
the default lookup order can be the typical web application
configuration use case, in which consumers define all of the
configurations for every provider and their dependencies
when provider has not provided reasonable defaults. In
many embodiments, the default lookup order can provide
backwards compatibility with conventional approaches.

In several embodiments, the client lookup order can
determine the configuration defined by the client of the
provider, or in other words, the immediate call of the
provider. In such cases, the client (e.g., the immediate caller
of the provider) can be expected to define the configuration.
The client lookup order can be used for configuration
settings that are expected to be defined solely by the client.
In many embodiments, if the client fails to define the
configuration, the application will fail. For example, persis-
tence provider 430 (FIG. 4) can expect that consumer 410
(FIG. 4) will define the configuration for hosts setting 461
(FIG. 4), and can fail if consumer 410 (FIG. 4) does not
provide the configuration for host setting 461 (FIG. 4).

In a number of embodiments, the final lookup order can
use the configuration setting defined by the provider, which
can be unable to be overridden by the consumer. In several
embodiments, the final lookup order can be used when there
is a universal common or default value for the configuration
that the provider wants to define and manage. For example,
persistence provider 430 (FIG. 4) can use the final lookup
order when persistence provider 430 (FIG. 4) wants to use
a particular encryption algorithm, such as SHA1 for security
setting 451 (FIG. 4), as an enterprise policy for encrypting
database credentials and does not want any consumer to
override it.

In some embodiments, the provider lookup order can be
used when the provider wants absolute control over the
configuration used for each of its consumers. Unlike the final
lookup order, which can use a generic default configuration
defined by the provider for each of its callers, the provider
lookup order can allow the provider to define the configu-
rations separately for each of its callers.

In various embodiments, the consumer lookup order can
be used when the provider expects the consumer to have
defined the configuration. Unlike the client lookup order,
which can use the configuration defined by the immediate
caller of the provider, the consumer lookup order can be
used to obtain the configuration from the consumer, which
can be different in the case of transitive dependencies.

In many embodiments, the provider-consumer lookup
order can be used when the provider defines reasonable
configuration settings for each consumer, but allows con-
sumers to override, if needed. In several embodiments, the
provider-consumer lookup order can first look at the pro-
vider lookup order, then can look at the consumer lookup
order. For example, a messaging provider can provide some
default queue parameters for the consumer. The queues can
be separate for each consumer, so the messaging provider
can define them to have a unique name for each consumer.
The messaging provider can set other default tuning param-

10

20

25

30

40

45

55

60

14

eters, which can then be customized by the consumers. If the
consumer customizes the tuning parameters, those configu-
ration setting can take effect at runtime. If the consumer does
not define customized tuning parameters, the default tuning
parameters defined by the messaging provider can be used.

In a number of embodiments, the consumer-provider
lookup order can be the opposite of the provider-consumer
lookup order, in that the provider can allow consumer
defined configurations, but can override a consumer-defined
configuration, if needed. In many embodiments, the con-
sumer-provider lookup order can first look at the consumer
lookup order, then can look at the provider lookup order. For
example, a logging provider can allow consumers to tune the
logging configuration settings, as needed by the consumer.
Some consumers can choose to log at a lower-detailed level,
such as INFO, and other consumers can choose to log at a
higher-detailed level, such as DEBUG. During some periods
of time, such as during the holidays, the amount of traffic on
the web servers, such as web server 300, can result in
network congestion in data centers or in the cloud. In such
scenarios, the logging provider can want to have ultimate
control, such as to throttle or turn off logging altogether until
the network congestion issue is resolved. The logging pro-
vider can include a throttling feature that tunes for the cloud
as needed, using the consumer-provider lookup order, to
override the values defined by the consumers.

Turning ahead in the drawings, FIG. 6 illustrates a
sequence diagram 600 for calls by cache provider 420 to
obtain the configuration for the cache setting. Sequence
diagram 600 is merely exemplary, and embodiments of
configuration resolution can be employed in many different
embodiments or examples not specifically depicted or
described herein. Sequence diagram 600 illustrates only the
case of cache provider 420 making calls to obtain the
configuration of the cache setting, and does not show calls
made by any other provider and/or calls made to obtain the
configuration for any other setting. In many embodiments,
the calls made by cache provider 420 can occur through the
direct dependency relationship, in which consumer 410 calls
cache provider 420, or through the transitive dependency
relationship, in which consumer 410 calls persistence pro-
vider 430, which in turn calls cache provider 420. In several
embodiments, the configuration returned to cache provider
420 can be different based on whether cache provider 420
has been called through the direct dependency relationship
or through the transitive dependency relationship.

Sequence diagram 600 can include a sequence 630, which
can illustrate cache provider 420 making a call to obtain the
cache configuration in a direct dependency relationship.
Sequence 630 can include a call 631 from consumer 410 to
cache provider 420. In sequence 630, consumer 410 is the
consumer and the client of cache provider 420. Cache
provider 420 can make a call 632 to get the configuration of
the cache setting based on a lookup order defined by cache
provider 420. In many embodiments, the configuration
returned from call 632 can depend on the lookup order that
is specified by cache provider 420. In many embodiments,
cache provider 420 can perform one or more operations
based on the configuration returned from call 632. In several
embodiments, sequence 630 can include a response 633
from cache provider 420 to consumer 410, which can return
control to consumer 410 after cache provider 420 has
completed the processing resulting from call 631.

Sequence diagram 600 can include a sequence 640, which
can illustrate cache provider 420 making a call to obtain the
cache configuration in a transitive dependency relationship.
Sequence 640 can include a call 641 from consumer 410 to

US 10,325,003 B2

15

persistence provider 430. Next, sequence 640 can include a
call 642 from persistence provider 430 to cache provider
420. In sequence 640, consumer 410 is the consumer of
cache provider 420, and persistence provider 430 is the
client of cache provider 420. Cache provider 420 can make
a call 643 to get the configuration of the cache setting based
on a lookup order defined by cache provider 420. In many
embodiments, the configuration returned from call 643 can
depend on the lookup order that is specified by cache
provider 420. In many embodiments, cache provider 420 can
perform one or more operations based on the configuration
returned from call 643. In several embodiments, sequence
640 can include a response 644 from cache provider 420 to
persistence provider 430, and a subsequent response 645
from persistence provider to consumer 410, which can
return control to consumer 410 after cache provider 420 has
completed the processing resulting from call 642 and per-
sistence provider 430 has completed the processing resulting
from call 641.

In many embodiments, the configuration returned to
cache provider 420 can be different in sequence 640 than in
sequence 630. Table 2 summarizes the configuration out-
comes for the direct dependency relationship of sequence
630 depicted in FIG. 6. Table 3 summarizes the configura-
tion outcomes for the transitive dependency relationship of
sequence 640 depicted in FIG. 6. As provided in Tables 2
and 3, the provider-consumer lookup order and the con-
sumer-provider lookup order include a component from the
provider lookup order, which is included in brackets for
clarity to show that the outcome of the provider-consumer
lookup order is the outcome of the provider lookup order
overridden by the consumer lookup order, and the outcome
of the consumer-provider lookup order is the outcome of the
consumer lookup order overridden by the provider lookup
order.

In some embodiments, the override operation can use the
second configuration instead of the first configuration. For
example, “cache (4) override with cache (5),” which can be
the outcome of the provider lookup order for the direct
dependency relationship, can result in cache (4) being used
if cache (5) is not defined. But if cache (5) is defined, it can
be used instead of cache (4).

TABLE 2

Qutcomes for Direct Dependency

Lookup Order Returns

DEFAULT cache (1) if exists, else cache (4)
CLIENT cache (1)

FINAL cache (4)

PROVIDER cache (4) override with cache (5)
CONSUMER cache (1)

PROVIDER__CONSUMER [cache (4) override with cache (5)]
override with cache (1)
cache (1) override with [cache (4)

override with cache (5)]

CONSUMER__ PROVIDER

TABLE 3

Qutcomes for Transitive Dependency

Lookup Order Returns

DEFAULT
CLIENT
FINAL

cache (2) if exists, else cache (4)
cache (3)
cache (4)

10

15

20

25

30

35

40

45

50

55

60

65

16
TABLE 3-continued

Qutcomes for Transitive Dependency

Lookup Order Returns

PROVIDER cache (4) override with cache (7)
override with cache (6)
CONSUMER cache (2)

PROVIDER_CONSUMER [cache (4) override with cache (7)
override with cache (6)] override
with cache (2)

cache (2) override with [cache (4)
override with cache (7) override with

cache (6)]

CONSUMER__PROVIDER

In other embodiments, the override operation can include
an aggregate and override operation, which can result in an
aggregation of the settings that are not in conflict, and an
override of the settings that are in conflict. For example, if
cache (4) includes two settings, X=2 and Y=5, and cache (5)
includes two settings, Y=4 and Z=7, then “cache (4) override
with cache (5)” can result in the aggregation of the settings
that are not in conflict, X=2 and Z=7, and Y=5 being
overridden by Y=4, as those setting are in conflict, such that
the resulting configuration is X=2, Y=4, and 7=7.

As a further explanation, consider sequence 640 for the
transitive dependency relationship when cache provider 420
calls for the cache configuration 420 and sets the lookup
order to consumer-provider. Configuration determination
module 353 (FIG. 3) can determine the configuration to
return to cache configuration 420 using configuration 500
(FIG. 5). Because the lookup order is consumer-provider, the
consumer settings can be considered first. As such, configu-
ration determination module 353 (FIG. 3) can look at the
cache settings in consumer configurations 510 (FIG. 5).
Because the call to cache provider 420 came through the
persistence provider 430 in the transitive dependency rela-
tionship, configuration determination module 353 (FIG. 3)
can descend the tree of consumer configurations 510 (FIG.
5) through persistence-provider node 515 and cache-pro-
vider node 518 (FIG. 5) to retrieve the cache setting, cache
(2), in configuration 520 (FIG. 5).

In many embodiments, configuration determination mod-
ule 353 (FIG. 3) can next consider the provider settings, first
by looking at the default provider settings, then by looking
at the provider settings for a call made by the client, and then
by looking at the provider setting for a call made by the
consumer through the client. As such, configuration deter-
mination module 353 (FIG. 3) can look at the cache settings
in cache-provider configurations 540 (FIG. 5), starting at the
default environment under environment node 542 (FIG. 5),
which can retrieve the cache setting, cache (4), in configu-
ration 543 (FIG. 5). In many embodiments, configuration
determination module 353 (FIG. 3) can use cache (4) to
override or, alternatively, to aggregate and override, cache
(2), which can be denoted as (2+4). Next, for the client call,
configuration determination module 353 (FIG. 3) can look at
the cache settings under persistence provider node 552 (FIG.
5) and cache-provider node 553 (FIG. 5) to retrieve the
cache setting, cache (7), in configuration 555 (FIG. 5). In
many embodiments, configuration determination module
353 (FIG. 3) can use cache (7) to override or, alternatively,
to aggregate and override, (2+4), which can in turn be
denoted as (2+4+7). Next, for the consumer call through the
client, configuration determination module 353 (FIG. 3) can
look at the cache settings under consumer node 544, per-
sistence-provider node 548, and cache-provider node 549 to
retrieve the cache setting, cache (6), in configuration 551
(FIG. 5). In many embodiments, configuration determina-

US 10,325,003 B2

17

tion module 353 (FIG. 3) can use cache (6) to override or,
alternatively, to aggregate and override, (2+4+7), which can
in turn be denoted as (2+4+7+6). Finally, configuration
determination module 353 (FIG. 3) can return cache (2+4+
7+6) to cache provider 420. This explanation is provided
based on dependency graph 400 in FIG. 4 and the accom-
panying configurations 500 in FIG. 5. If the dependency
graph instead included additional levels of dependency, such
as an additional provider between consumer 410 (FIG. 4)
and persistence provider 430 (FIG. 4), the provider lookup
order can change accordingly to first look in the defaults of
called provider, followed by the client, then the caller of the
client, followed by the consumer. In other embodiments, the
dependency chain can be many levels deep.

Turning ahead in the drawings, FIG. 7 illustrates a flow
chart for a method 700 of configuration resolution, accord-
ing to an embodiment. Method 700 is merely exemplary and
is not limited to the embodiments presented herein. Method
700 can be employed in many different embodiments or
examples not specifically depicted or described herein. In
some embodiments, the procedures, the processes, and/or
the activities of method 700 can be performed in the order
presented. In other embodiments, the procedures, the pro-
cesses, and/or the activities of method 700 can be performed
in any suitable order. In still other embodiments, one or more
of the procedures, the processes, and/or the activities of
method 700 can be combined or skipped. In some embodi-
ments, method 700 can be implemented by input module
351 (FIG. 3), predefined configuration module 352 (FIG. 3),
configuration determination module 353 (FIG. 3), and/or
output module 354 (FIG. 3).

Referring to FIG. 7, in some embodiments method 700
can include a block 701 of optional other steps, as shown in
FIG. 8 and described below. In some embodiments, method
700 can skip block 701 of option other steps.

In many embodiments, method 700 additionally can
include a block 702 of receiving on a server a request from
a first provider to retrieve a configuration for a lookup order.
In several embodiments, the server can be similar or iden-
tical to web server 300 (FIG. 3). In a number of embodi-
ments, the first provider can be similar or identical to first
provider 320 (FIG. 3) and/or cache provider 420 (FIGS. 4,
6). In a number of embodiments, the first provider can be a
first library. In some embodiments, the request can be
received through an API, such as the getConfiguration API
described above. In a number of embodiments, the first
provider can be configured to be called directly by an
application such that the application has a direct dependency
relationship with the first provider. The application can be
similar or identical to application 310 (FIG. 3) and/or
consumer 410 (FIGS. 4, 6). In many embodiments, the
application can be a web application. In other embodiments,
the application can be a type of application different from a
web application. In some embodiments, the first provider
can be configured to be called by the application through a
second provider such that the application has a transitive
dependency relationship with the first provider through the
second provider. The second provider can be similar or
identical to persistence provider 430 (FIGS. 4, 6). In several
embodiments, and the second provider can be a second
library different from the first library. In various embodi-
ments, the request from the first provider can be received
when the first provider is called by the application through
one of the direct dependency relationship or the transitive
dependency relationship. In a number of embodiments, the
lookup order can be a default lookup order, a client lookup
order, a final lookup order, a provider lookup order, a

10

15

20

25

30

35

40

45

50

55

60

65

18

consumer lookup order, a provider-consumer lookup order,
and/or a consumer-provider lookup order.

In several embodiments, method 700 further can include
a block 703 of determining the configuration for the lookup
order using the server based at least in part on whether the
call to the first provider by the application is through the
direct dependency relationship or through the transitive
dependency relationship. In a number of embodiments,
block 703 can include determining the configuration for the
lookup order by selecting the configuration from one of at
least a first configuration and a second configuration differ-
ent from the first configuration. For example, the first
configuration can be one of the cache settings in configu-
rations 500 (FIG. 5), and the second configuration can be
another one of the cache settings in configurations 500 (FIG.
5). In a number of embodiments, block 703 can include
determining a first configuration based on the lookup order,
determining a second configuration different from the first
configuration based on the lookup order, and generating the
configuration by performing an aggregate and override
operation on the first configuration using the second con-
figuration. In some embodiments, the configuration can
include one or more different configuration settings.

In a number of embodiments, method 700 additionally
can include a block 704 of providing the configuration for
the lookup order to the first provider. For example, the
configuration can be returned in response to the getConfigu-
ration API call.

In several embodiments, method 700 further can include
a block 705 of receiving first information at the application
that is based at least in part on the configuration for the
lookup order. For example, the first provider can use the
configuration that is received in processing the call to the
first provider from the application that is received either
through the direct dependency relationship or the transitive
dependency relationship. The first provider can then return
information in response to the call. The application can
receive the first information from the first provider or from
the second provider, which can be the information returned
by the first provider, as in the case of the direct dependency
relationship, or information based at least in part on the
information returned by the first provider, as in the case of
the transitive dependency relationship. The first information
can be based at least in part based on the configuration
returned to the first provider.

In a number of embodiments, method 700 additionally
can include a block 706 of providing second information for
at least a portion of a web page that is based at least in part
on the first information. For example, the application can use
the first information to determine second information, and
display the second information on a portion of a web page.
As another example, the application can use the first infor-
mation to determine other information, which can be pro-
vided to one or more other applications, which can then be
used to at least in part by the other applications to create
second information that can be displayed on at least a
portion of a web page.

Proceeding to the next drawing, FIG. 8 illustrates a flow
chart for block 701 of optional other steps, according to an
embodiment. Block 701 is merely exemplary and is not
limited to the embodiments presented herein. Block 701 can
be employed in many different embodiments or examples
not specifically depicted or described herein. In some
embodiments, the procedures, the processes, and/or the
activities of block 701 can be performed in the order
presented. In other embodiments, the procedures, the pro-
cesses, and/or the activities of block 701 can be performed

US 10,325,003 B2

19

in any suitable order. In still other embodiments, one or more
of the procedures, the processes, and/or the activities of
block 701 can be combined or skipped. In various embodi-
ments, block 701 can be performed prior to block 702 (FIG.
7) of receiving on a server a request from a first provider to
retrieve a configuration for a lookup order.

In some embodiments, block 701 can include a block 801
of storing on the server a first set of predefined configura-
tions defined by the application. For example, the first set of
predefined configurations defined by the application can be
similar or identical to consumer configurations 510 (FIG. 5).
In some embodiments, the first set of predefined configura-
tions defined by the application can include a first predefined
configuration defined by the application for when the appli-
cation is using the first provider. The first predefined con-
figuration can be similar or identical to configuration 514
(FIG. 5). In some embodiments, the first set of predefined
configurations defined by the application can include a
second predefined configuration defined by the application
for when the application is using the second provider. The
second predefined configuration can be similar or identical
to configuration 517 (FIG. 5). In some embodiments, the
first set of predefined configurations defined by the appli-
cation can include a third predefined configuration defined
by the application for when the application is using the first
provider through the second provider. The third predefined
configuration can be similar or identical to configuration 520
(FIG. 5). In a number of embodiments, the first, second and
third predefined configurations can be different from each
other.

In some embodiments, block 701 additionally can include
a block 802 of storing on the server a second set of
predefined configurations defined by the first provider. For
example, the second set of predefined configurations defined
by the first provider can be similar or identical to cache-
provider configurations 540 (FIG. 5). In some embodiments,
the second set of predefined configurations defined by the
first provider can include a fourth predefined configuration
defined by the first provider for a first default usage of the
first provider. The fourth predefined configuration can be
similar or identical to configuration 543 (FIG. 5). In some
embodiments, the second set of predefined configurations
defined by the first provider can include a fifth predefined
configuration defined by the first provider for when the
application is using the first provider. The fifth predefined
configuration can be similar or identical to configuration 547
(FIG. 5). In some embodiments, the second set of predefined
configurations defined by the first provider can include a
sixth predefined configuration defined by the first provider
for when the application is using the first provider through
the second provider. The sixth predefined configuration can
be similar or identical to configuration 551 (FIG. 5). In some
embodiments, the second set of predefined configurations
defined by the first provider can include a seventh predefined
configuration defined by the first provider for when the
second provider is using the first provider. The seventh
predefined configuration can be similar or identical to con-
figuration 555 (FIG. 5). In a number of embodiments, the
fourth, fifth, sixth, and seventh predefined configurations
can be different from each other.

In a number of embodiments, block 701 further can
include a block 803 of storing on the server a third set of
predefined configurations defined by the second provider.
For example, the third set of predefined configurations
defined by the second provider can be similar or identical to
persistence-provider configurations 530 (FIG. 5). In some
embodiments, the third set of predefined configurations

10

15

20

25

30

35

40

45

50

55

60

65

20

defined by the second provider can include an eighth pre-
defined configuration defined by the second provider for a
second default usage of the second provider. The eighth
predefined configuration can be similar or identical to con-
figuration 533 (FIG. 5). In some embodiments, the third set
of predefined configurations defined by the second provider
can include a ninth predefined configuration defined by the
second provider for when the second provider is using the
first provider. The ninth predefined configuration can be
similar or identical to configuration 536 (FIG. 5). In a
number of embodiments, the eighth and ninth predefined
configurations can be different from each other.

In many embodiments, the predefined configurations of
the first, second, and third sets of predefined configurations
be defined prior to block 703 (FIG. 7) of determining the
configuration for the lookup order. In many embodiments,
the configuration can be defined after the administrator
packages the application.

Returning to FIG. 7, in many embodiments, when the
lookup order is the default lookup order, block 703 of
determining the configuration for the lookup order can
include: if the call to the first provider by the application is
through the direct dependency relationship, determining the
configuration is the first predefined configuration defined by
the application for when the application is using the first
provider; and if the call to the first provider by the applica-
tion is through the transitive dependency relationship, deter-
mining the configuration is the third predefined configura-
tion defined by the application for when the application is
using the first provider through the second provider. In some
embodiments, block 703 can further include: if the call to the
first provider by the application is through the direct depen-
dency relationship and the first predefined configuration for
when the application is using the first provider is not defined,
determining the configuration is the fourth predefined con-
figuration defined by the first provider for the first default
usage of the first provider; and if the call to the first provider
by the application is through the transitive dependency
relationship and the third predefined configuration for when
the application is using the first provider through the second
provider is not defined, determining the configuration is the
fourth predefined configuration defined by the first provider
for the first default usage of the first provider

In several embodiments, when the lookup order is the
client lookup order, block 703 of determining the configu-
ration for the lookup order can include: if the call to the first
provider by the application is through the direct dependency
relationship, determining the configuration is the first pre-
defined configuration defined by the application for when
the application is using the first provider; and if the call to
the first provider by the application is through the transitive
dependency relationship, determining the configuration is
the ninth predefined configuration defined by the second
provider for when the second provider is using the first
provider.

In several embodiments, when the lookup order is the
final lookup order, block 703 of determining the configura-
tion for the lookup order can include determining the
configuration is the fourth predefined configuration defined
by the first provider for the first default usage of the first
provider.

In several embodiments, when the lookup order is the
provider lookup order, block 703 of determining the con-
figuration for the lookup order can include: if the call to the
first provider by the application is through the direct depen-
dency relationship, generating the configuration by perform-
ing an aggregate and override operation on the fourth

US 10,325,003 B2

21

predefined configuration defined by the first provider for the
first default usage of the first provider using the fifth
predefined configuration defined by the first provider for
when the application is using the first provider; and if the
call to the first provider by the application is through the
transitive dependency relationship, generating the configu-
ration by performing the aggregate and override operation
on the fourth predefined configuration defined by the first
provider for the first default usage of the first provider using
the seventh predefined configuration defined by the first
provider for when the second provider is using the first
provider, and further performing the aggregate and override
operation using the sixth predefined configuration defined
by the first provider for when the application is using the first
provider through the second provider.

In several embodiments, when the lookup order is the
consumer lookup order, block 703 of determining the con-
figuration for the lookup order can include: if the call to the
first provider by the application is through the direct depen-
dency relationship, determining the configuration is the first
predefined configuration defined by the application for when
the application is using the first provider; and if the call to
the first provider by the application is through the transitive
dependency relationship, determining the configuration is
the third predefined configuration defined by the application
for when the application is using the first provider through
the second provider.

In several embodiments, when the lookup order is the
provider-consumer lookup order, block 703 of determining
the configuration for the lookup order can include: if the call
to the first provider by the application is through the direct
dependency relationship, generating the configuration by
performing an aggregate and override operation on the
fourth predefined configuration defined by the first provider
for the first default usage of the first provider using the fifth
predefined configuration defined by the first provider for
when the application is using the first provider, and further
performing the aggregate and override operation using the
first predefined configuration defined by the application for
when the application is using the first provider; and if the
call to the first provider by the application is through the
transitive dependency relationship, generating the configu-
ration by performing the aggregate and override operation
on the fourth predefined configuration defined by the first
provider for the first default usage of the first provider using
the seventh predefined configuration defined by the first
provider for when the second provider is using the first
provider, further performing the aggregate and override
operation using the sixth predefined configuration defined
by the first provider for when the application is using the first
provider through the second provider, and further perform-
ing the aggregate and override operation using the third
predefined configuration defined by the application for when
the application is using the first provider through the second
provider.

In several embodiments, when the lookup order is the
consumer-provider lookup order, block 703 of determining
the configuration for the lookup order can include: if the call
to the first provider by the application is through the direct
dependency relationship, generating the configuration by
performing an aggregate and override operation on the first
predefined configuration defined by the application for when
the application is using the first provider using the fourth
predefined configuration defined by the first provider for the
first default usage of the first provider, and further perform-
ing the aggregate and override operation using the fifth
predefined configuration defined by the first provider for

10

15

20

25

30

35

40

45

50

55

60

65

22

when the application is using the first provider; and if the
call to the first provider by the application is through the
transitive dependency relationship, generating the configu-
ration by performing the aggregate and override operation
on the third predefined configuration defined by the appli-
cation for when the application is using the first provider
through the second provider using the fourth predefined
configuration defined by the first provider for the first default
usage of the first provider, further performing the aggregate
and override operation using the seventh predefined con-
figuration defined by the first provider for when the second
provider is using the first provider, and further performing
the aggregate and override operation using the sixth pre-
defined configuration defined by the first provider for when
the application is using the first provider through the second
provider.

Returning to FIG. 3, in some embodiments, input module
351 can perform block 702 (FIG. 7) of receiving on a server
a request from a first provider to retrieve a configuration for
a lookup order. In several embodiments, predefined configu-
ration module 351 can perform block 801 (FIG. 8) of storing
on the server a first set of predefined configurations defined
by the application, block 802 (FIG. 8) of storing on the
server a second set of predefined configurations defined by
the first provider, and/or block 803 (FIG. 8) of storing on the
server a third set of predefined configurations defined by the
second provider. In many embodiments, configuration deter-
mination module 353 can perform block 703 (FIG. 7) of
determining the configuration for the lookup order using the
server based at least in part on whether the call to the first
provider by the application is through the direct dependency
relationship or through the transitive dependency relation-
ship. In various embodiments, output module 354 (FIG. 3)
can perform block 704 (FIG. 7) of providing the configu-
ration for the lookup order to the first provider.

Although configuration resolution has been described
with reference to specific embodiments, it will be under-
stood by those skilled in the art that various changes may be
made without departing from the spirit or scope of the
disclosure. Accordingly, the disclosure of embodiments is
intended to be illustrative of the scope of the disclosure and
is not intended to be limiting. It is intended that the scope of
the disclosure shall be limited only to the extent required by
the appended claims. For example, to one of ordinary skill
in the art, it will be readily apparent that any element of
FIGS. 1-8 may be modified, and that the foregoing discus-
sion of certain of these embodiments does not necessarily
represent a complete description of all possible embodi-
ments. For example, one or more of the procedures, pro-
cesses, or activities of FIGS. 7-8 may include different
procedures, processes, and/or activities and be performed by
many different modules, in many different orders.

All elements claimed in any particular claim are essential
to the embodiment claimed in that particular claim. Conse-
quently, replacement of one or more claimed elements
constitutes reconstruction and not repair. Additionally, ben-
efits, other advantages, and solutions to problems have been
described with regard to specific embodiments. The benefits,
advantages, solutions to problems, and any element or
elements that may cause any benefit, advantage, or solution
to occur or become more pronounced, however, are not to be
construed as critical, required, or essential features or ele-
ments of any or all of the claims, unless such benefits,
advantages, solutions, or elements are stated in such claim.

Moreover, embodiments and limitations disclosed herein
are not dedicated to the public under the doctrine of dedi-
cation if the embodiments and/or limitations: (1) are not

US 10,325,003 B2

23

expressly claimed in the claims; and (2) are or are potentially
equivalents of express elements and/or limitations in the
claims under the doctrine of equivalents.
What is claimed is:
1. A system comprising:
one or more processors; and
one or more non-transitory computer-readable media stor-
ing computing instructions configured to run on the one
or more processors and perform:
receiving at a server a first request from a first provider
to retrieve a first configuration for a first lookup
order, the first provider is configured (a) to be called
directly by an application such that the application
has a direct dependency relationship with the first
provider and (b) to be called by the application
through a second provider such that the application
has a transitive dependency relationship with the first
provider through the second provider, the first
request from the first provider is received when the
first provider is called in a first call by the application
through the direct dependency relationship, the first
request comprising the first lookup order;
determining the first configuration for the first lookup
order using the server based at least in part on both:
(a) an ordering specified by the first lookup order,
and (b) the first call to the first provider by the
application being through the direct dependency
relationship;
providing the first configuration to the first provider;
receiving at the server a second request from the first
provider to retrieve a second configuration for a
second lookup order, the second request from the
first provider is received when the first provider is
called in a second call by the application through the
transitive dependency relationship, the second
request comprising the second lookup order;
determining the second configuration for the second
lookup order using the server based at least in part on
both: (a) an ordering specified by the second lookup
order, and (b) the second call to the first provider by
the application being through the transitive depen-
dency relationship, such that the first configuration
can be different from the second configuration when
the first lookup order is different from the second
lookup order, and such that the first configuration can
be different from the second configuration when the
first lookup order is the same as the second lookup
order; and
providing the second configuration to the first provider,
wherein:
the first lookup order and the second lookup order each
specify a specific ordering of one or more predefined
configurations from which to determine configura-
tion settings to be used based on the specific order-
ing.
2. The system of claim 1, wherein:
determining the first configuration for the first lookup
order further comprises determining the first configu-
ration for the first lookup order by selecting the first
configuration from one of at least a third configuration
and a fourth configuration different from the third
configuration.
3. The system of claim 1, wherein:
determining the first configuration for the first lookup
order further comprises:
determining a third configuration based on the first
lookup order;

10

20

25

30

40

45

50

55

60

65

24

determining a fourth configuration different from the
third configuration based on the first lookup order;
and

generating the first configuration by performing an
aggregate and override operation on the third con-
figuration using the fourth configuration.

4. The system of claim 1, wherein:
the first configuration comprises one or more different
configuration settings.
5. The system of claim 1, wherein:
the application is a web application;
the first provider is a first library; and
the second provider is a second library different from the
first library.
6. The system of claim 1, wherein the computing instruc-
tions are further configured to perform:
before receiving the first request from the first provider to
retrieve the first configuration for the first lookup order:
storing on the server a first set of predefined configu-
rations defined by the application;

storing on the server a second set of predefined con-
figurations defined by the first provider; and

storing on the server a third set of predefined configu-
rations defined by the second provider.

7. The system of claim 6, wherein:
the first set of predefined configurations defined by the
application comprises:

a first predefined configuration defined by the applica-
tion for when the application is using the first pro-
vider;

a second predefined configuration defined by the appli-
cation for when the application is using the second
provider;

a third predefined configuration defined by the appli-
cation for when the application is using the first
provider through the second provider; and

the first, second and third predefined configurations are
different from each other;

the second set of predefined configurations defined by the
first provider comprises:

a fourth predefined configuration defined by the first
provider for a first default usage of the first provider;

a fifth predefined configuration defined by the first
provider for when the application is using the first
provider;

a sixth predefined configuration defined by the first
provider for when the application is using the first
provider through the second provider;

a seventh predefined configuration defined by the first
provider for when the second provider is using the
first provider; and

the fourth, fifth, sixth, and seventh predefined configu-
rations are different from each other; and

the third set of predefined configurations defined by the
second provider comprises:

an eighth predefined configuration defined by the sec-
ond provider for a second default usage of the second
provider;

a ninth predefined configuration defined by the second
provider for when the second provider is using the
first provider; and

the eighth and ninth predefined configurations are dif-
ferent from each other.

8. The system of claim 7, wherein:
the first lookup order and the second lookup order are
each a default lookup order;

US 10,325,003 B2

25

determining the first configuration for the first lookup
order comprises:
determining the first configuration is the first predefined
configuration defined by the application for when the
application is using the first provider; and
determining the second configuration for the second
lookup order comprises:
determining the second configuration is the third pre-
defined configuration defined by the application for
when the application is using the first provider
through the second provider.
9. The system of claim 8, wherein:
determining the first configuration for the first lookup
order further comprises:
when the first predefined configuration for when the
application is using the first provider is not defined,
determining the first configuration is the fourth pre-
defined configuration defined by the first provider for
the first default usage of the first provider; and
determining the second configuration for the second
lookup order further comprises:
when the third predefined configuration for when the
application is using the first provider through the
second provider is not defined, determining the sec-
ond configuration is the fourth predefined configu-
ration defined by the first provider for the first default
usage of the first provider.
10. The system of claim 7, wherein:
the first lookup order and the second lookup order are
each a client lookup order;
determining the first configuration for the first lookup
order comprises:
determining the first configuration is the first predefined
configuration defined by the application for when the
application is using the first provider; and
determining the second configuration for the second
lookup order comprises:
determining the second configuration is the ninth pre-
defined configuration defined by the second provider
for when the second provider is using the first
provider.
11. The system of claim 7, wherein:
the first lookup order and the second lookup order are
each a final lookup order;
determining the first configuration for the first lookup
order comprises determining the first configuration is
the fourth predefined configuration defined by the first
provider for the first default usage of the first provider;
and
determining the second configuration for the second
lookup order comprises determining the second con-
figuration is the fourth predefined configuration defined
by the first provider for the first default usage of the first
provider.
12. The system of claim 7, wherein:
the first lookup order and the second lookup order are
each a provider lookup order; and
determining the first configuration for the first lookup
order comprises:
generating the first configuration by performing an
aggregate and override operation on the fourth pre-
defined configuration defined by the first provider for
the first default usage of the first provider using the
fifth predefined configuration defined by the first
provider for when the application is using the first
provider; and

10

15

20

25

30

35

40

50

55

60

26

determining the second configuration for the second
lookup order comprises:
generating the second configuration by performing the
aggregate and override operation on the fourth pre-
defined configuration defined by the first provider for
the first default usage of the first provider using the
seventh predefined configuration defined by the first
provider for when the second provider is using the
first provider, and further performing the aggregate
and override operation using the sixth predefined
configuration defined by the first provider for when
the application is using the first provider through the
second provider.
13. The system of claim 7, wherein:
the first lookup order and the second lookup order are
each a consumer lookup order;
determining the first configuration for the first lookup
order comprises:
determining the first configuration is the first predefined
configuration defined by the application for when the
application is using the first provider; and
determining the second configuration for the second
lookup order comprises:
determining the second configuration is the third pre-
defined configuration defined by the application for
when the application is using the first provider
through the second provider.
14. The system of claim 7, wherein:
the first lookup order and the second lookup order are
each a provider-consumer lookup order;
determining the first configuration for the first lookup
order comprises:
generating the first configuration by performing an
aggregate and override operation on the fourth pre-
defined configuration defined by the first provider for
the first default usage of the first provider using the
fifth predefined configuration defined by the first
provider for when the application is using the first
provider, and further performing the aggregate and
override operation using the first predefined configu-
ration defined by the application for when the appli-
cation is using the first provider; and
determining the second configuration for the second
lookup order comprises:
generating the second configuration by performing the
aggregate and override operation on the fourth pre-
defined configuration defined by the first provider for
the first default usage of the first provider using the
seventh predefined configuration defined by the first
provider for when the second provider is using the
first provider, further performing the aggregate and
override operation using the sixth predefined con-
figuration defined by the first provider for when the
application is using the first provider through the
second provider, and further performing the aggre-
gate and override operation using the third pre-
defined configuration defined by the application for
when the application is using the first provider
through the second provider.
15. The system of claim 7, wherein:
the first lookup order and the second lookup order are
each a consumer-provider lookup order;
determining the first configuration for the first lookup
order comprises:
generating the first configuration by performing an
aggregate and override operation on the first pre-
defined configuration defined by the application for

US 10,325,003 B2

27
when the application is using the first provider using
the fourth predefined configuration defined by the
first provider for the first default usage of the first
provider, and further performing the aggregate and
override operation using the fifth predefined configu-
ration defined by the first provider for when the
application is using the first provider; and
determining the second configuration for the second
lookup order comprises:
generating the second configuration by performing the
aggregate and override operation on the third pre-
defined configuration defined by the application for
when the application is using the first provider
through the second provider using the fourth pre-
defined configuration defined by the first provider for
the first default usage of the first provider, further
performing the aggregate and override operation
using the seventh predefined configuration defined
by the first provider for when the second provider is
using the first provider, and further performing the
aggregate and override operation using the sixth
predefined configuration defined by the first provider
for when the application is using the first provider
through the second provider.
16. A method comprising:
receiving at a server a first request from a first provider to
retrieve a first configuration for a first lookup order, the
first provider is configured (a) to be called directly by
an application such that the application has a direct
dependency relationship with the first provider and (b)
to be called by the application through a second pro-
vider such that the application has a transitive depen-
dency relationship with the first provider through the
second provider, the first request from the first provider
is received when the first provider is called in a first call
by the application through the direct dependency rela-
tionship, the first request comprising the first lookup
order;
determining the first configuration for the first lookup
order using the server based at least in part on both: (a)
an ordering specified by the first lookup order, and (b)
the first call to the first provider by the application
being through the direct dependency relationship;
providing the first configuration to the first provider;
receiving at the server a second request from the first
provider to retrieve a second configuration for a second
lookup order, the second request from the first provider
is received when the first provider is called in a second

10

15

20

25

30

35

40

45

28

call by the application through the transitive depen-
dency relationship, the second request comprising the
second lookup order;
determining the second configuration for the second
lookup order using the server based at least in part on
both: (a) an ordering specified by the second lookup
order, and (b) the second call to the first provider by the
application being through the transitive dependency
relationship, such that the first configuration can be
different from the second configuration when the first
lookup order is different from the second lookup order,
and such that the first configuration can be different
from the second configuration when the first lookup
order is the same as the second lookup order; and
providing the second configuration to the first provider,
wherein:
the first lookup order and the second lookup order each
specify a specific ordering of one or more predefined
configurations from which to determine configura-
tion settings to be used based on the specific order-
ing.
17. The method of claim 16, wherein:
determining the first configuration for the first lookup
order further comprises determining the first configu-
ration for the first lookup order by selecting the first
configuration from one of at least a third configuration
and a fourth configuration different from the third
configuration.
18. The method of claim 16, wherein:
determining the first configuration for the first lookup
order further comprises:
determining a third configuration based on the first
lookup order;
determining a fourth configuration different from the
third configuration based on the first lookup order;
and
generating the first configuration by performing an
aggregate and override operation on the third con-
figuration using the fourth configuration.
19. The method of claim 16, wherein:
the first configuration comprises one or more different
configuration settings.
20. The method of claim 16, wherein:
the application is a web application;
the first provider is a first library; and
the second provider is a second library different from the
first library.

